
Generating Representative Video Teleconferencing Traffic
David DeAngelis

USC/ISI
deangeli@isi.edu

Alefiya Hussain
USC/ISI

hussain@isi.edu

Brian Kocoloski
USC/ISI

bkocolos@isi.edu

Calvin Ardi
USC/ISI

calvin@isi.edu

Stephen Schwab
USC/ISI

schwab@isi.edu

Figure 1: VTC traffic generator client screenshot

ABSTRACT
Video teleconferencing (VTC) is a dominant network application,
yet there is a dearth of tools to generate such traffic for system-
atic and reproducible experimentation. We present a framework
to create representative video teleconferencing traffic and discuss
our methodology for behavioral control of multiple bots to cre-
ate human-like dialog coordination, including interactive talking
and silence patterns. Our framework can be coupled with propri-
etary commercial VTC applications as well as deployed completely
within a testbed environment to benchmark emerging networking
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technology and evaluate the next generation of traffic classifica-
tion, quality of service (QoS) algorithms, and traffic engineering
systems. Our traffic generators are open source and freely available
at https://mergetb.org/projects/searchlight/.
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1 INTRODUCTION
Large-scale video teleconference (VTC) environments are common-
place today as more people are working from home and partici-
pating in meetings and conferences virtually. However, there are
limited tools to model human-like VTC traffic for systematic and
disciplined experimentation. Prior work in traffic generation and
simulation typically focus on maximizing throughput for bench-
marks and stress testing [8] or on simulating the behavior of the
underlying protocols (TCP, UDP, and others) [2, 12, 16].

Networking and cyber security researchers need VTC traffic gen-
eration tools in order to develop and evaluate the next generation
of systems, including those for network traffic classification and
quality of service management. These tools allow experimenters to
test and evaluate their solutions during development, and include
reconfigurable client and server components.

Additionally, to create representative traffic on-the-wire, the inter-
action between the various participants in the VTC session should
be human-like. In section 2, we present the behavior control model
used for human-like interaction with the bots. While preliminary
at this stage, this model enables reproducible VTC experiments by
emulating the process of “talking” and “listening” with a systematic
and well-defined methodology.

In section 3 we discuss the various components in the VTC
framework and how they can be configured for a networking ex-
periment. Typically, a networking experiment involves introducing
some network dynamics, such as rate limiting and flow rerouting,
that will have an impact on the VTC experience. In section 4, we
discuss how our framework collects Quality of Experience (QoE)
measurements to characterize the impact of the network on the
end user. In section 5.1, we discuss an end-to-end case study of
how our VTC traffic generator can be used for an evaluation on
a emulation-based testbed. Finally, in section 6, we outline future
directions to expand this initial framework.

2 BEHAVIOR MODELING

Figure 2: Finite state machine model of a multi-party dis-
course controller

Aprimary component of a realistic VTC traffic generation system
is amechanism for creating human-like behavior. In the case of VTC,
these behaviors include identifying a speaker, switching speakers
to match realistic dialog patterns, producing a variety of dialog

clips in a set of unique voices, realistic pauses, and more. This
generative approach is necessary for rigorous experimentation
and is superior to simple VTC traffic playback because complex
networks utilize sophisticated compression and caching techniques
that could capture the repetition of traffic replays. Beyond VTC, the
technique proposed here generalizes to any multi-party discourse.
A portion of this mechanism is represented formally in Figure 2.
The VTC controller described in section 3.2 implements this finite
state machine to orchestrate dialog.

3 VTC FRAMEWORK
The VTC traffic generator implements the behavioral control model
described in section 2. The VTC framework is built from a collec-
tion of separate technologies which serve as building blocks for
automated traffic generation in a testbed environment. This section
describes how each subcomponent in this framework operates. Fig-
ure 3 shows the overall architecture of the VTC framework, with
VTC clients, a VTC controller, and a VTC application running on
separate machines of an experiment testbed.

Figure 3: VTC traffic generator system architecture

3.1 VTC Application
The VTC application is a 3rd party internet based teleconference
application such as Zoom, Microsoft Teams, Google Hangouts, or a
self-hosted application such as Jitsi Meet (see Figure 1). The traf-
fic generator presented here can operate on any VTC application,
but we have chosen to focus on a dockerized self-hosted Jitsi in-
stance within our testbed [15] for experiment repeatability. With
the exception of 2-party VTC sessions that are directly peer-to-peer,
all audio and video feeds are sent to and received from the VTC
application.

3.2 VTC Controller
The VTC controller is the component of the framework that serves
as the brain of the session. This component uses a behavioral model
(see section 2) that initiates clients, connects clients to the VTC
session, orchestrates dialog, and closes the VTC session. The dialog
orchestration is currently implemented as a loop that selects a client
bot, where all bots except the currently speaking one are equally
probable. Next, the selected bot is instructed to take a dialog turn,
while the controller waits until the dialog is complete, then the
controller selects a different client to speak. The controller directs
the clients using the XML-RPC protocol on the control plane.
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3.3 VTC Clients
The VTC clients are implemented as XML-RPC based servers that
run continuously, awaiting instruction from the VTC controller.
When they connect to the VTC session their assigned video track
will play on loop into a virtual camera device. When instructed
to speak, they select a conversation at random from a set of pre-
generated dialog tracks in their assigned voice, and they speak
for a variable number of sentences that is governed by a normal
distribution ⌊|N(0, 2)|⌉ + 1.

Figure 4: Video and audio media pipelines

3.3.1 Virtual Devices. The VTC clients contain virtual camera and
microphone devices that connect the bots to the VTC application.
Mimicking the physical world with virtual devices allows us to use
the standard input interfaces that the VTC applications provide.
Figure 4 shows the video and audio pipelines from origination
through plumbing the virtual devices into the VTC application. The
virtual camera is a V4L2 loopback kernel module [14] that is fed
with video files played back using FFmpeg. The appropriate bot
name is superimposed onto the video feed to assist in development
and clearly indicate the presence of a bot in the VTC session, see
Figure 1. The virtual microphone is created using the Pulse Audio
sound server to play a dialog track into a virtual speaker, where the
speaker output is connected to the input of a software microphone,
which is selected by the VTC application using browser automation.

These virtual devices present to the VTC application in an iden-
tical fashion to physical devices. Via the V4L2 loopback kernel
module, the virtual camera appears as a physical camera, and the
video media files are preprocessed to match popular camera out-
put resolutions and frame rates. Dialog audio tracks are generated
in raw WAV format, compressed using lossless FLAC encoding,
and fed directly into the virtual microphone. This ensures that no
audio compression artifacts are present other than those attribut-
able to the VTC application itself. However, adding ambient and
environmental noise would add further to the realism.

3.4 Media Library
Figure 3 shows a shared media library that is fed into the virtual
devices, comprising the audio and video content of the VTC session.
This is generated a priori using a process outlined in Figure 4. The
video files are currently sourced online from websites with free-use
licenses. The audio dialog tracks are procedurally generated in a 3
step process:

(1) OpenAI’s GPT-2 language model generates dialog texts [10].
(2) Manual curation removes inappropriate content.
(3) Google Cloud Text-to-Speech service is employed to gener-

ate FLAC audio tracks using a variety of realistic WaveNet
voices [5].

3.5 Automation
Lastly, several layers of automation are employed to ensure reliable,
repeatable experimentation with the VTC traffic generator on a
networked testbed. First, on each VTC client the Microsoft Play-
wright web application testing framework provides an automated
web browser that is scripted to join/exit a VTC session and select
the virtual input devices. This browser automation is specific to the
self-hosted Jitsi Meet VTC application. Applying this technology
to a different platform requires adapting the browser automation
for the new platform’s web client. These web clients for 3rd party
VTC platforms may not have a stable user interface, thereby in-
troducing risk. Beyond client automation, the Ansible automation
platform is used to configure each component shown in Figure 3,
including setting experimental parameters, launching experiments,
and collecting results.

4 QUALITY OF EXPERIENCE (QOE)
As described in section 3, effort was taken to ensure the variety,
variability, and fidelity of the VTC client media that is fed into the
VTC application. However, network conditions, whether they are
accidental or intentional, transient or permanent, can adversely
affect the Quality of Experience (QoE) of the VTC application. QoE
is an important measure that is used to characterize the impact
of network and device conditions on the end user. However, QoE
measures for VTC are constantly evolving [11][3].

A VTC session is comprised of synchronized, bidirectional video
and audio feeds to each participant. The gold standard for QoE
for video and audio streaming is a subjective evaluation called the
mean opinion score (MOS)[6], which is essentially an ordinal scale
of perceived quality. Calculating MOS is difficult because it requires
human evaluation and is outside the scope of this work, so we turn
to automated measures for QoE. Because VoIP is analogous to VTC,
only without video, we argue that VoIP measures of QoE are a start-
ing point for evaluating VTC QoE, since in many cases a properly
functioning, low latency audio track is essential to a productive
VTC session, particularly when multiple participants must take
turns speaking. The video track is often of secondary importance,
though we did informally observe video quality degradation as the
link capacity was manipulated during VTC sessions.

Two of the most critical and readily obtained measures of QoE
for VTC are latency, measured in round trip time (RTT), and jitter,
which can be described as temporal deviations from the input signal.
Our VTC traffic generator can drive a self-hosted instance of the
Jitsi VTC application, and a core component called the Jitsi Video-
bridge publishes session statistics that can serve as an indicator
of QoE including latency, jitter, and more [7]. Beyond these initial
measures, we plan to incorporate video-specific metrics defined in
the Common Media Client Data (CMCD) specification [4] and ac-
cessible through the WebRTC stats module [1], including encoding
bitrate and buffer starvation as measures of video QoE.

5 EVALUATION
The initial evaluation presented here has two parts: a case study
and an analysis of network traffic generated by the VTC generator.
The case study to demonstrates a deployment scenario of the VTC
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traffic generator and explores its performance under varying net-
work conditions. The traffic analysis section compares the synthetic
network traffic generated by the VTC traffic generator to network
traffic generated by a live human VTC session.

5.1 Case Study
Figure 5 shows an experimental topology on a cyber experimen-
tation testbed [15] where h0 hosts the Jitsi application and h2-h11
each host one of 10 VTC clients feeding 1080p video. Initially each
link has an available bandwidth of 50 Mbps, full duplex, and at
t = 175s the link between c0 and c1 is dropped to 10 Mbps, full
duplex.

Each client node consists of 8 virtualized CPU cores with 16 GB
of RAM. The least powerful nodes we have deployed to contain a
quad core Intel Atom CPU and 2GB of RAM. On these nodes the
automated Chromium browser is CPU limited when 1080p 60fps
video streams are enabled. Low resolution streams alleviate this
limitation, as does provisioning more powerful experiment nodes.

Figure 5: Experiment network topology

Figure 6a shows the bandwidth of the VTC session, measured as
the egress rate on core router c0. At t = 175s when we deliberately
limit the bandwidth between c0 and c1 dropping the link capac-
ity from 50 Mbps to 10 Mbps. We observe that the VTC session
bandwidth on node c0, calculated as the sum of the VTC egress
traffic on the 3 c0 links drops from from roughly 50 Mbps to under
30 Mbps. Simultaneously, figure 6b shows a significant spike in
latency, but latency quickly recovers to tolerable levels due to the
underlying WebRTC protocol that powers the Jitsi VTC application.
This also coincides with an observed degradation in quality of the
video feeds originating on the clients that depend on the degraded,
saturated link.

This case study demonstrates that the VTC traffic generator
can be deployed on realistic network topologies, has significant
requirements for network resources, and responds dynamically to
changing network conditions. The study presented here is just a
single demonstration deployment, but Ansible automation enables
rapid, repeatable deployments and data collection for testbed or
locally hosted experiments.

(a) VTC session bandwidth, measured as egress from c0

(b) Aggregrate latency as reported by the Jitsi Videobridge

Figure 6: VTC session network characteristics. Note: link ca-
pacity experimental variable changed at t = 175s.

5.2 Traffic Analysis
This initial traffic analysis compares synthetic VTC traffic to live
VTC traffic. The live capture was taken by conducting a 5 minute
3-way conversation between human participants using a self hosted
Jitsi Meet server, with the server and all clients on the corporate
network. The network interface on the Jitsi Meet host was tapped
to ensure the traffic between all clients and the Jitsi application was
captured.

The synthetic VTC traffic was captured on the Lighthouse [15]
testbed by tapping the same Jitsi Meet network interface. Two 5
minute sessions were captured, one with 270p video resolution
from all clients, and another with 1080p resolution video. Table 1
shows summary statistics of the packet captures along with the
traffic flows between each end client {A,B,C} and the Jitsi host {H}.

The first row represents a live human VTC session, whereas
rows 2 and 3 represent synthetic traffic created by the VTC genera-
tor. Strong similarities in the packet captures across all three runs
are apparent, but there are some notable differences, particularly
with the packet capture size and with the UDP flow size. We hy-
pothesize that some of the discrepancy in capture sizes is due to
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Table 1: Network traffic comparison between bots and human operators

UDP flow size (MB)

clients source res-
olution

size
(MB)

duration
(m:s)

protocol A�H B�H C�H H�A H�B H�C

3x human varies 479 5:06 UDP 135 133 133 19 19 17
3x bot 270p 171 5:16 UDP 38 37 37 15 16 16
3x bot 1080p 373 5:09 UDP 51 130 126 15 16 15

a combination of 2 factors. First, there is currently no ambient or
environmental noise in addition to the dialog in bot sessions. In a
live conversation with unmuted participants there is a constant au-
dio feed flowing from the client to the host. Secondly, the WebRTC
technology underlying Jitsi uses AVC and VP8 video compression.
We suspect that the looping videos might be more compressible
than a live video feed. The relative UDP flow sizes between clients
and the host is consistent across all runs, though we observed larger
upload flows than download flows, likely due to the videobridge
forwarding lower bandwidth streams. This initial analysis exam-
ines flow volume, but not conversation dynamics, inviting further
investigation into the temporal aspects of both live and synthetic
VTC sessions.

6 FUTUREWORK AND CONCLUSION
This paper presented a new tool for creating realistic video tele-
conference and voice over IP traffic on a network. This tool has
been used at modest scale on several cybersecurity testbeds. Along
with other traffic generators, this work has already played an in-
strumental role in developing new networking technologies for
managing Quality of Service for distributed applications on the
internet [9]. As hosted VTC applications continue to gain favor
over older point to point VoIP protocols, technologies to measure,
manage, and secure networks will continue to benefit from realistic
VTC traffic generation as presented here.

There are several compelling areas to improve the fidelity and
functionality of this VTC traffic generator. Most importantly, con-
versation dynamics are governed by a heuristic that is not grounded
in empirical research. Studying the dynamics of recorded conversa-
tions, specifically the temporal distributions of speaker participa-
tion, would add fidelity to the traffic generation and perhaps lend
insight into the social sciences too.

Currently video media is sourced externally and cultivating
a large video library to ensure variety in traffic is cumbersome.
Nascent techniques involving generative adversarial networks have
the potential to automatically create ultra realistic video feeds [13]
without looping. In this vein, audio and video media is currently
generated a priori, but on-the-fly media generation would represent
an evolutionary step in VTC traffic generation.

Lastly, adapting the VTC traffic generator to host sessions in-
volving a combination of automated bots and live humans could
help advance conversational AI technologies.

The VTC/VoIP traffic generator presented here, along with addi-
tional tools and traffic generators for network experimentation, are
available to the public at: https://mergetb.org/projects/searchlight/.
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