
Sled: System-Loader for Ephemeral Devices
Lincoln Thurlow, Ryan Goodfellow, Stephen Schwab

USC Information Sciences Institute
lincoln@isi.edu, rgoodfel@isi.edu, schwab@isi.edu

Abstract—Imaging an operating system onto a server is an
extensive and time consuming process, which commonly taking
several minutes to boot. For a testbed administrator, loading
an image onto a device is one of the slowest yet most relied
upon tasks that a testbed must complete prior to starting an
experiment. To minimize wait times for disk loading, as well as
to streamline the process of image loading, we introduce Sled, a
system-loader for ephemeral devices, that uses warm-booting to
quickly image devices. Sled is able to provision a new operating
system in under a minute, and is 10 times faster than previous
methods of image loading.

I. INTRODUCTION

In a testbed, experiments are allocated a set of devices.
These devices live for the duration of the experiment, once
the experiment is finished, the devices are wiped so a new
experiment can begin. This life cycle is common across
many domains, but especially for testbeds where devices are
ephemeral for the duration of an experiment. Experiments are
composed of many individual tasks such as assigning devices
to an experiment, building network topology, or configuring
devices. For testbed administrators, the longest task in prepar-
ing an experiment is imaging the devices, it is not uncommon
for this process to take tens of minutes to complete, potentially
frustrating experimenters in the process.

In order for experiments to be reproducible, testbeds require
a clean environment. Typically, this is achieved by wiping the
device of the previous state and power cycling before and
after writing an image to the disk. Many testbeds commonly
implement disk imaging using the Frisbee disk imaging pro-
tocol [1]. Frisbee aggressively minimizes the number of bytes
transmitted across the network at the cost of latency, which
we discuss further in Section II.

To reduce the overall time it takes to image a device from
scratch for an experiment, we developed Sled, an image load-
ing protocol for rapidly loading an image onto a device. Sled
incorporates two primary features to improve the performance
of disk imaging. First, it utilizes u-root [2], a small golang
initramfs (root file system), which can be loaded at minimal
cost. Second, from the u-root kernel, Sled is able to kernel
execute (kexec) [3] into another kernel, bypassing firmware
and hardware initialization (warm boot). Kexec is capable of
targeting any kernel with kexec enabled, allowing Sled to
target bootloaders such as GNU’s GRUB[4] to provide targets
for virtually any operating system.

II. PREVIOUS WORK

As a part of the Emulab testbed, the Emulab team developed
Frisbee [1]. Frisbee introduced a custom format able to exploit

the operating system’s unallocated disk blocks to minimize
the number bytes it transmits over the network. Due to the
custom image format, the burden for creating new images
lies with testbed administrators. Frisbee also uses multicast
to reduce the number redundant bytes sent over the network.
This introduces latency in the multicast group waiting for
new members to join in addition to packets that must be
retransmitted to the multicast group. Once the image has been
written the the disk, the device reboots, loading the newly
written image. Most of the drawbacks outlined above for
causing additional latency have been noted by the Emulab
team [5].

III. SLED

Sled is designed to be quick. Devices using Sled are capable
of booting on the order of seconds rather than minutes. Sled
consists of three components: clients (Sledc), daemons (Sledd),
and the controller (Sledctl). The controller is responsible
for configuring the daemon’s datastore, which stores a map
between mac addresses and Sled commands. Clients request
and execute commands from the daemons. The current Sled
commands are Wipe, Write, and Kexec. Between them they are
responsible for cleaning the device, writing a disk image, and
booting into the new image. Clients run the Sled binary on top
of u-root, and are responsible for conforming the device to the
experimenter’s requirements through the Sled commands.

Sled separates disk wiping from writing. This detail allows
for the sanitizing of devices to be amortized on experiment
tear-down rather than construction. Disk wipe is implemented
by zeroing the disk. Both disk wipe and write are designed to
accommodate the heterogeneity of a device, with customizable
write buffers to fully saturate IO bandwidth of the device’s
storage substrate. The last Sled command, kexec, takes the
parameters given to it and jumps into the new kernel. After
kexecing, the device has completed the image loading process
and can be handed over to the experimenter, reducing the need
to power cycle after writing the disk image.

A. Sledc

Sledc is written on top of u-root, a minimal initramfs
that each experiment device boots from preboot execution
environment (PXE) over the network. The total size of the u-
root binary is between 10-15MB, depending on supplemental
u-root commands. Sledc begins by negotiating an IP with a
DHCP server, after which it requests Sled commands from
Sledd. If the device has just finished an experiment, Sledd
will request Sledc to wipe the disk, preparing it for the next

2019 IEEE INFOCOM WKSHPS: CNERT 2019: Computer and Networking Experimental Research using Testbeds

978-1-7281-1878-9/19/$31.00 ©2019 IEEE 913

Fig. 1. Device PXE boots u-root image with Sledc (1). Sledc requests an IP
(2). Sledc requests Sled commands (3). Sledd looks up Sledc mac in datastore
(4). Optionally, Sledd requests bootloader binary (5). Response is returned to
client in (2). Sledc executes Sled commands.

experiment. Otherwise, Sledc will receive commands for either
writing a new bootable image or kexecing from the u-root
kernel to the kernel specified in the Sled command. Once the
boot has completed, control is given over to the experimenter.
The overview of Sled communication is shown in Figure 1.

B. Sledd

Sledd is a stateless service intended to be deployed in a
distributed manner. Sledd listens on two ports, one for Sled
command requests, and the other for transferring disk images.
State is stored in a distributed datastore which each daemon
connects in order to service requests. The limitations to Sledd’s
scalability is in the number of write requests multiplied by
the write request’s buffer size. Additional work is planned for
batching requests and auto-scaling buffers to provide better
performance and fairness for heterogeneous devices.

C. Sledctl

Sledctl supports both an API and command line interface to
the Sled control plane. The Sled control plane is responsible
for mapping mac addresses of devices with bootable images
in the distributed datastore accessed by Sledd. Through the
Sledctl, testbed administrators manage what images are loaded
onto what devices as defined by experimenters.

IV. RESULTS

We present preliminary results testing Sled against Frisbee
using the DETERLab testbed [6]. We used two HP Proliant
DL360 G8 Servers [7] with a 1Gb link used for copying
images, mimicking the Frisbee implementation in DETERLab.
To test the performance of Frisbee, we used the Emulab
command os load to request Frisbee write an image to the
server. The two measurements in Figure 2 are: how long
os load took to write and prepare the disk image (Disk
Written), and the total amount of time until the new image
presented a prompt to the experimenter (Operational). For
Sled, we measured the amount of time it took to write the
operating system from one HP G8 Server acting as Sledd
to the other HP G8 server as Sledc. The measurements are
far from perfect, as the single server scenario for Frisbee
unnecessarily waits for other multicast consumers to join the
group. Additionally, Frisbee used Deterlab’s shared control
network while Sled used the dedicated experiment network.

Disk Written Operational

0

100

200

300

400

500

600

S
e
co

n
d
s

(s
)

327

514

10

54

Comparison of Image Loading Durations

Frisbee
Sled

Fig. 2. The latency of writing and loading an Ubuntu16.04 onto a HP Proliant
DL360 server using Frisbee and Sled.

Each test was run five times; these results indicate that Sled is
roughly one-tenth the latency, or ten times faster than Frisbee
for booting an image.

V. CONCLUSION

Sled is a sub-minute image bootloader developed for testbed
administrators to reduce the time, complexity, and overhead
necessary to load an operating system onto devices in a
testbed. Sled has no disk format requirements and allows users
to generate and supply their own images to testbeds. Sled
is approximately 10 times faster than Frisbee for imaging
devices. For future work we plan on deploying Sled to our
cluster of over 1400 nodes.

ACKNOWLEDGMENTS

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053. The views, opinions, and/or findings
expressed are those of the author(s) and should not be in-
terpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

AVAILABILITY

Sled is currently available on gitlab under an Apache 2.0
license.

https://gitlab.com/mergetb/tech/sled

REFERENCES

[1] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, “Fast, Scalable
Disk Imaging with Frisbee,” in USENIX Annual Technical Conference,
General Track, 2003, pp. 283–296.

[2] R. G. Minnich and A. Mirtchovski, “U-root: A Go-based, Firmware
Embeddable Root File System with On-demand Compilation.” in USENIX
Annual Technical Conference, 2015, pp. 577–586.

[3] J. Corbet, “Kexec.” [Online]. Available: https://lwn.net/Articles/15468/
[4] B. Dubbs, “GNU GRUB.” [Online]. Available:

https://www.gnu.org/software/grub/
[5] L. Stoller, “Potential areas of improvement for a new Frisbee Hack-

fest.” [Online]. Available: https://gitlab.flux.utah.edu/emulab/emulab-
devel/blob/master/clientside/os/frisbee.redux/IDEAS

[6] T. Benzel, “The Science of Cyber Security Experimentation: The DETER
Project,” in Proceedings of the 27th Annual Computer Security Applica-
tions Conference. ACM, 2011, pp. 137–148.

[7] DETERLab, “Node types,” https://docs.deterlab.net/core/node-
types/#dl380g3, 2018.

2019 IEEE INFOCOM WKSHPS: CNERT 2019: Computer and Networking Experimental Research using Testbeds

914

